Locomotion in diving elephant seals: physical and physiological constraints.
نویسندگان
چکیده
To better understand how elephant seals (Mirounga angustirostris) use negative buoyancy to reduce energy metabolism and prolong dive duration, we modelled the energetic cost of transit and deep foraging dives in an elephant seal. A numerical integration technique was used to model the effects of swim speed, descent and ascent angles, and modes of locomotion (i.e. stroking and gliding) on diving metabolic rate, aerobic dive limit, vertical displacement (maximum dive depth) and horizontal displacement (maximum horizontal distance along a straight line between the beginning and end locations of the dive) for aerobic transit and foraging dives. Realistic values of the various parameters were taken from previous experimental data. Our results indicate that there is little energetic advantage to transit dives with gliding descent compared with horizontal swimming beneath the surface. Other factors such as feeding and predator avoidance may favour diving to depth during migration. Gliding descent showed variable energy savings for foraging dives. Deep mid-water foraging dives showed the greatest energy savings (approx. 18%) as a result of gliding during descent. In contrast, flat-bottom foraging dives with horizontal swimming at a depth of 400m showed less of an energetic advantage with gliding descent, primarily because more of the dive involved stroking. Additional data are needed before the advantages of gliding descent can be fully understood for male and female elephant seals of different age and body composition. This type of data will require animal-borne instruments that can record the behaviour, three-dimensional movements and locomotory performance of free-ranging animals at depth.
منابع مشابه
Heart rate and oxygen consumption of northern elephant seals during diving in the laboratory.
Many techniques have been employed to measure metabolic and cardiovascular changes in diving marine mammals. Each of these methods has its advantages, but the methods also have drawbacks when applied to phocid seals. The aim of this study was to investigate heart rate and metabolic responses to diving in juvenile northern elephant seals that are not associated with forced changes in exercise st...
متن کاملCondition and mass impact oxygen stores and dive duration in adult female northern elephant seals.
The range of foraging behaviors available to deep-diving, air-breathing marine vertebrates is constrained by their physiological capacity to breath-hold dive. We measured body oxygen stores (blood volume and muscle myoglobin) and diving behavior in adult female northern elephant seals, Mirounga angustirostris, to investigate age-related effects on diving performance. Blood volume averaged 74.4+...
متن کاملFree-swimming northern elephant seals have low field metabolic rates that are sensitive to an increased cost of transport.
Widely ranging marine predators often adopt stereotyped, energy-saving behaviours to minimize the energetic cost of transport while maximizing energy gain. Environmental and anthropogenic disturbances can disrupt energy balance by prompting avoidance behaviours that increase transport costs, thereby decreasing foraging efficiency. We examined the ability of 12 free-ranging, juvenile northern el...
متن کاملEffects of buoyancy on the diving behavior of northern elephant seals.
Marine mammals experience radical seasonal changes in body composition, which would be expected to affect their buoyancy in the water. The aim of this study was to examine the relationship between such changes in buoyancy and diving behavior in northern elephant seals Mirounga angustirostris. This was achieved by modifying the buoyancy of 13 juvenile elephant seals translocated from Año Nuevo S...
متن کاملThree-dimensional space use during the bottom phase of southern elephant seal dives
BACKGROUND In marine pelagic ecosystems, the spatial distribution of biomass is heterogeneous and dynamic. At large scales, physical processes are the main driving forces of biomass distribution. At fine scales, both biotic and abiotic parameters are likely to be key determinants in the horizontal and vertical distribution of biomass, with direct consequences on the foraging behaviour of diving...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 362 1487 شماره
صفحات -
تاریخ انتشار 2007